skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sen, Arnab"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Abstract The box-ball systems are integrable cellular automata whose long-time behavior is characterized by soliton solutions, with rich connections to other integrable systems such as the Korteweg-de Vries equation. In this paper, we consider a multicolor box-ball system with two types of random initial configurations and obtain sharp scaling limits of the soliton lengths as the system size tends to infinity. We obtain a sharp scaling limit of soliton lengths that turns out to be more delicate than that in the single color case established in [LLP20]. A large part of our analysis is devoted to studying the associated carrier process, which is a multidimensional Markov chain on the orthant, whose excursions and running maxima are closely related to soliton lengths. We establish the sharp scaling of its ruin probabilities, Skorokhod decomposition, strong law of large numbers and weak diffusive scaling limit to a semimartingale reflecting Brownian motion with explicit parameters. We also establish and utilize complementary descriptions of the soliton lengths and numbers in terms of modified Greene-Kleitman invariants for the box-ball systems and associated circular exclusion processes. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  3. The box-ball systems are integrable cellular automata whose long-time behavior is characterized by soliton solutions, with rich connections to other integrable systems such as the Korteweg-de Vries equation. In this paper, we consider a multicolor box-ball system with two types of random initial configurations and obtain sharp scaling limits of the soliton lengths as the system size tends to infinity. We obtain a sharp scaling limit of soliton lengths that turns out to be different from the single color case as established in [LLP20]. A large part of our analysis is devoted to studying the associated carrier process, which is a multi-dimensional Markov chain on the orthant, whose excursions and running maxima are closely related to soliton lengths. We establish the sharp scaling of its ruin probabilities, Skorokhod decomposition, strong law of large numbers, and weak diffusive scaling limit to a semimartingale reflecting Brownian motion with explicit parameters. We also establish and utilize complementary descriptions of the soliton lengths and numbers in terms of the modified Greene-Kleitman invariants for the box-ball systems and associated circular exclusion processes. 
    more » « less
  4. Abstract For $$p\geq 1$$ and $$(g_{ij})_{1\leq i,j\leq n}$$ being a matrix of i.i.d. standard Gaussian entries, we study the $$n$$-limit of the $$\ell _p$$-Gaussian–Grothendieck problem defined as $$\begin{align*} & \max\Bigl\{\sum_{i,j=1}^n g_{ij}x_ix_j: x\in \mathbb{R}^n,\sum_{i=1}^n |x_i|^p=1\Bigr\}. \end{align*}$$The case $p=2$ corresponds to the top eigenvalue of the Gaussian orthogonal ensemble; when $$p=\infty $$, the maximum value is essentially the ground state energy of the Sherrington–Kirkpatrick mean-field spin glass model and its limit can be expressed by the famous Parisi formula. In the present work, we focus on the cases $$1\leq p<2$$ and $$2<p<\infty .$$ For the former, we compute the limit of the $$\ell _p$$-Gaussian–Grothendieck problem and investigate the structure of the set of all near optimizers along with stability estimates. In the latter case, we show that this problem admits a Parisi-type variational representation and the corresponding optimizer is weakly delocalized in the sense that its entries vanish uniformly in a polynomial order of $$n^{-1}$$. 
    more » « less